Introducing the alternative

The last couple of posts have attempted to (in the confines of an #ascilite12 paper) summarise some constraints with the dominant product and process models used in industrial e-learning and suggest an alternative. The following – which probably should have been posted first – describes how and where this alternative comes from.

As all this is meant to go into an academic paper, the following starts with a discussion about “research methods” before moving onto describing some of the reasons why this alternative approach might have some merit.

As with the prior posts, this is all still first draft stuff.

Research methods and limitations

From the initial stages of its design the Webfuse system was intended to be a vehicle for both practice (it hosted over 3000 course sites from 1997-2009) and research. Underpinning the evolution of Webfuse was an on-going process of cycle action research that sought to continually improve the system through insights from theory and observation of use. This commenced in 1996 and continued, at varying levels of intensity, through to 2009 when the system ceased directly supporting e-learning. This work has contributed in varying ways to over 25 peer-reviewed publications. Webfuse has also been studied by other researchers investigating institutional adoption of e-learning systems (Danaher, Luck, & McConachie, 2005) and shadow systems in the context of ERP implementation (Behrens, 2009; Behrens & Sedera, 2004).

Starting in 2001 the design of Webuse became the focus of a PhD thesis (Jones, 2011) that made two contributions towards understanding e-learning implementation within universities: the Ps Framework and an Information Systems Design Theory (ISDT). The Ps Framework arose out of an analysis of existing e-learning implementation practices and as a tool to enable the comparison of alternate approaches (Jones, Vallack, & Fitzgerald-Hood, 2008). The formulated ISDT – An ISDT for emergent university e-learning systems –offers guidance for e-learning implementation that brings a number of proposed advantages over industrial e-learing. These contributions to knowledge arose from an action research process that combined broad theoretical knowledge – the principles of the ISDT are supported by insights from a range of kernel theories – with empirical evidence arising from the design and support of a successful e-learning system. Rather than present the complete ISDT – due primarily to space constraints – this paper focuses on how three important components of e-learning can be re-conceptualised through the principles of the ISDT.

The ISDT – and the sub-set of principles presented in this paper – seek to provide theoretical guidance about how to develop and support information systems for university e-learning that are capable of responding to the dominant characteristics (diversity, uncertainty and rapid change) of university e-learning. This is achieved through a combination of product (principles of form and function) and process (principles of implementation) that focus on developing a deep and evolving understanding of the context and use of e-learning. It is through being able to use that understanding to make rapid changes to the system, which ultimately encourages and enables adoption and on-going adaptation. It suggests that any instantiation built following the ISDT will support e-learning in a way that: is specific to the institutional context; results in greater quality, quantity and variety of adoption; and, improves the differentiation and competitive advantage of the host institution.

As with all research, the study described within this study has a number of limitations that should be kept in mind when considering its findings. Through its use of action research, this work suffers the same limitations, to varying degrees, of all action research. Baskerville and Wood-Harper (1996) identify these limitations as: (1) lack of impartiality of the researcher; (2) lack of discipline; (3) mistaken for consulting; and (4) context-dependency leading to difficulty of generalizing findings. These limitations have been addressed within this study through a variety of means including: a history of peer-reviewed publications throughout the process; use of objective data sources; the generation of theory; and, an on-going process of testing. Consequently the resulting ISDT and the principles described here have not been “proven”. This was not the aim of this work. Instead, the intent was to gather sufficient empirical and theoretical support to build and propose a coherent and useful alternative to industrial e-learning. The question of proof and further testing of the ISDT in similar and different contexts provides – as in all research aiming to generate theory – an avenue for future research.

On the value of Webfuse

This section aims to show that there is some value in considering Webfuse. It seeks to summarise the empirical support for the ISDT and the principles described here by presenting evidence that the development of Webfuse led to a range of features specific to the institution and to greater levels of adoption. It is important to note that from 1997 through 2005 Webfuse was funded and controlled by one of five faculties at CQUniversity. Webfuse did not become a system controlled by a central IT division until 2005/2006 as a result of organizational restructures. During the life-span of Webfuse CQU adopted three different official, institutional LMS: WebCT (1999), Blackboard (2004), and Moodle (2010).

Specific to the context

During the period from 1999 through 2002 the “Webfuse faculty” saw a significant increase in the complexity of its teaching model including the addition of numerous international campuses situated within capital cities and a doubling in student numbers, primarily through full-fee paying overseas students. By 2002, the “Webfuse faculty” was teaching 30% of all students at the University. Due to the significant increased in complexity of teaching in this context, a range of teaching management and support services were integrated into Webfuse including: staff and student “portals”, an online assignment submission and management system, a results upload application, an informal review of grade system, a timetable generator, student photo gallery, academic misconduct database, email merge facility, and assignment extension systems.

The value of these systems to the faculty is illustrated by this quote from the Faculty annual report for 2003 cited by Danaher, Luck & McConachie (2005, p. 39)

[t]he best thing about teaching and learning in this faculty in 2003 would be the development of technologically progressive academic information systems that provide better service to our students and staff and make our teaching more effective. Webfuse and MyInfocom development has greatly assisted staff to cope with the complexities of delivering courses across a large multi-site operation.

By 2003 the faculties not using Webfuse were actively negotiating to enable their staff to have access to the services. In 2009 alone, over 12,000 students and 1100 staff made use of these services. Even though no longer officially supported, it is a few of these services that continue to be used by the university in the middle of 2012.

Quotes from staff using the Webfuse systems reported in various publications (Behrens, 2009; Behrens, Jamieson, Jones, & Cranston, 2005; Jones, Cranston, Behrens, & Jamieson, 2005) also provide some insights into how well Webfuse supported the specific context at CQUni.

my positive experience with other Infocom systems gives me confidence that OASIS would be no different. The systems team have a very good track record that inspires confidence

The key to easy use of OASIS is that it is not a off the shelf product that is sooooo generic that it has lost its way as a course delivery tool.

I remember talking to [a Webfuse developer] and saying how I was having these problems with uploading our final results into [the Enterprise Resource Planning (ERP) system] for the faculty. He basically said, “No problem, we can get our system to handle that”…and ‘Hey presto!’ there was this new piece of functionality added to the system … You felt really involved … You didn’t feel as though you had to jump through hoops to get something done.

Beyond context specific systems supporting the management of learning and teaching, Webfuse also included a number of context specific learning and teaching innovations. A short list of examples includes:

  • the course barometer;
    Based on an innovation (Svensson, Andersson, Gadd, & Johnsson, 1999) seen at a conference the barometer was designed to provide students a simple, anonymous method for providing informal, formative feedback about a course (Jones, 2002). Initially intended only for the authors courses, the barometer became a required part of all Webfuse course sites from 2001 through 2005. In 2007/2008 the barometers were used as part of a whole of institution attempt to encourage formative feedback in both Webfuse and Blackboard.
  • Blog Aggregation Management (BAM); and
    BAM allowed students to create individual, externally hosted web-logs (blog) and use them as reflective journals. Students registered their external blog with BAM, which then mirrored all of the students’ blog posts on an institutional server and provided a management and marking interface for teaching staff. Created by the author for use in his own teaching in 2006, BAM was subsequently used in 26 course offerings by 2050+ students and ported to Moodle as BIM (Jones & Luck, 2009). In reviewing BAM, the ELI guide to blogging (Coghlan et al., 2007) identified as
    One of the most compelling aspects of the project was the simple way it married Web 2.0 applications with institutional systems. This approach has the potential to give institutional teaching and learning systems greater efficacy and agility by making use of the many free or inexpensive—but useful—tools like blogs proliferating on the Internet and to liberate institutional computing staff and resources for other efforts.
  • A Web 2.0 course site.
    While it looked like a normal course website, none of the functionality – including discussion, wiki, blog, portfolio and resource sharing – was implemented by Webfuse. Instead, freely available and externally hosted Web 2.0 tools and services provided all of the functionality. For example, each student had a portfolio and a weblog provided by the site http://redbubble.com. The content of the default course site was populated by using BAM to aggregate RSS feeds (generated by the external tools) which were then parsed and displayed by Javascript functions within the course site pages. Typically students and staff did not visit the default course site, as they could access all content by using a course OPML file and an appropriate reader application.

Even within the constraints placed on the development of Webfuse it was able to develop an array of e-learning applications that are either not present in industrial LMSes, were added much later than the Webfuse services, or had significantly reduced functionality.

Greater levels of adoption

Encouraging staff adoption of the Webfuse system was one of the main issues raised in the original Webfuse paper (Jones & Buchanan, 1996). Difficulties in encouraging high levels of quality use of e-learning within universities has remained a theme throughout the literature. Initial use of Webfuse in 1997 and 1998 was not all that successful in achieving that goal, with only five – including the designer of Webfuse who made 50% of all edits using the system – of 60 academic staff making any significant use of Webfuse by early 1999 (Jones & Lynch, 1999). These limitations were addressed from 1999 onwards by a range of changes to the system, how it was supported and the organizational context. The following illustrates the success of these changes by comparing Webfuse adoption with that of the official LMS (WebCT 1999-2003/4; Blackboard 2004-2009) used primarily by the non-Webfuse faculties. It first examines the number of course sites and then examines feature adoption.

From 1997 Webfuse automatically created a default course site for all Faculty courses by drawing on a range of existing course related information. For the official institutional LMS course sites were typically created on request and had to be populated by the academics. By the end of 2003 – 4 years after the initial introduction of WebCT as the official institutional LMS – only 15% (141) of courses from the non-Webfuse faculties had WebCT course sites. At the same time, 100% (302) of the courses from the Webfuse faculty had course sites. Due to the need for academics to populate WebCT and Blackboard courses sites, the presence of a course website doesn’t necessarily imply use. For example, Tickle et al (2009) report that 21% of the 417 Blackboard courses being migrated to Moodle in 2010 contained no documents.

Research examining the adoption of specific categories of LMS features provides a more useful insight into LMS usage. Figures 1 through 4 use the research model proposed by Malikowski, Thompson, & Thies (2007) to compare the adoption of LMS features between Webfuse (the thick continuous lines in each figure), CQUni’s version of Blackboard (the dashed lines), and range of adoption rates found in the literature by Malikowski et al (2007) (the two dotted lines in each figure). This is done for four of the five LMS feature categories identified by Malikowski et al (2007): content transmission (Figure 1), class interaction (Figure 2), student assessment (Figure 3), and course evaluation (Figure 4).

(Click on the graphs to see large versions)

Content Transmission Interactions
Figure 1: Adoption of content transmission features: Webfuse, Blackboard and Malikowski Figure 2: Adoption of class interactions features: Webfuse, Blackboard and Malikowski
(missing archives of most pre-2002 course mailing lists)
Evaluate Students Evaluate Courses
Figure 3: Adoption of student assessment features: Webfuse, Blackboard and Malikowski Figure 4: Adoption of course evaluation features: Webfuse, Blackboard and Malikowski

The Webfuse usage data included in Figures 1 through 4 only include actual feature use by academics or students. For example, from 2001 through 2005 100% of Webfuse courses contained a course evaluation feature called a course barometer, only courses where the course barometer was actually used by students are included in Figure 4. Similarly, all Webfuse default course sites contained content (either automatically added from existing data repositories or copied across from a previous term). Figure 1 only includes data for those Webfuse course sites where teaching staff modified or added content.

Figures 2 and 3 indicate Webfuse adoption rates of greater than 100%. This is possible because a number of Webfuse features – including the EmailMerge and online assignment submission and management applications – were being used in course sites hosted on Blackboard. Webfuse was seen as providing services that Blackboard did not provide, or that were significantly better than what Blackboard did provide. Similarly, the spike in Webfuse course evaluation feature adoption in 2008 to 51.6% is due to a CQU wide push to improve formative feedback across all courses that relied on the Webfuse course barometer feature.

Excluding use by non-Webfuse courses and focusing on the time period 2003-2006, Figures 2 and 3 show that adoption of Webfuse class interaction and student assessment features significantly higher than the equivalent Blackboard features at CQU. It is also significantly higher than the adoption rates found by Malikowski et al (2007) in the broader literature. It also shows adoption rates that appear to be somewhat higher than that found amongst 2008, Semester 1 courses at the University of Western Sydney and Griffith University by Rankine et al (2009). Though it should be noted that Rankine et al (2009) used different sampling and feature categorization strategies that make this comparison tentative.

References

Behrens, S. (2009). Shadow systems: the good, the bad and the ugly. Communications of the ACM, 52(2), 124-129.

Behrens, S., Jamieson, K., Jones, D., & Cranston, M. (2005). Predicting system success using the Technology Acceptance Model: A case study. 16th Australasian Conference on Information Systems. Sydney. Retrieved from http://cgit.nutn.edu.tw:8080/cgit/PaperDL/tkw_090717140108.pdf

Behrens, S., & Sedera, W. (2004). Why do shadow systems exist after an ERP implementation? Lessons from a case study. In C.-P. Wei (Ed.), (pp. 1713-1726). Shanghai, China.

Coghlan, E., Crawford, J., Little, J., Lomas, C., Lombardi, M., Oblinger, D., & Windham, C. (2007). ELI Discovery Tool: Guide to Blogging. EDUCAUSE. Retrieved from http://www-cdn.educause.edu/eli/GuideToBlogging/13552

Danaher, P. A., Luck, J., & McConachie, J. (2005). The stories that documents tell: Changing technology options from Blackboard, Webfuse and the Content Management System at Central Queensland University. Studies in Learning, Evaluation, Innovation and Development, 2(1), 34-43.

Jones, D. (2002). Student Feedback, Anonymity, Observable Change and Course Barometers. In S. R. Philip Barker (Ed.), (pp. 884-889). Denver, Colorado: AACE.

Jones, D. (2011). An Information Systems Design Theory for E-learning. Philosophy. Australian National University. Retrieved from https://davidtjones.wordpress.com/research/phd-thesis/

Jones, D., & Buchanan, R. (1996). The design of an integrated online learning environment. In P. J. Allan Christie Beverley Vaughan (Ed.), (pp. 331-345). Adelaide.

Jones, D., Cranston, M., Behrens, S., & Jamieson, K. (2005). What makes ICT implementation successful: A case study of online assignment submission. Adelaide.

Jones, D., & Luck, J. (2009). Blog Aggregation Management: Reducing the Aggravation of Managing Student Blogging. In G. Siemns & C. Fulford (Eds.), World Conference on Educational Multimedia, Hypermedia and Telecommunications 2009 (pp. 398-406). Chesapeake, VA: AACE. Retrieved from http://www.editlib.org/p/31530

Jones, D., & Lynch, T. (1999). A Model for the Design of Web-based Systems that supports Adoption, Appropriation and Evolution. In Y. D. San Murugesan (Ed.), (pp. 47-56). Los Angeles.

Jones, D., Vallack, J., & Fitzgerald-Hood, N. (2008). The Ps Framework: Mapping the landscape for the PLEs@CQUni project. Hello! Where are you in the landscape of educational technology? ASCILITE’2008. Melbourne.

Malikowski, S., Thompson, M., & Theis, J. (2007). A model for research into course management systems: bridging technology and learning theory. Journal of Educational Computing Research, 36(2), 149-173.

Rankine, L., Stevenson, L., Malfroy, J., & Ashford-Rowe, K. (2009). Benchmarking across universities: A framework for LMS analysis. Ascilite 2009. Same places, different spaces (pp. 815-819). Auckland. Retrieved from http://www.ascilite.org.au/conferences/auckland09/procs/rankine.pdf

Svensson, L., Andersson, R., Gadd, M., & Johnsson, A. (1999). Course-Barometer: Compensating for the loss of informal feedback in distance education (pp. 1612-1613). Seattle, Washington: AACE.

Tickle, K., Muldoon, N., & Tennent, B. (2009). Moodle and the institutional repositioning of learning and teaching at CQUniversity. Auckland, NZ. Retrieved from http://www.ascilite.org.au/conferences/auckland09/procs/tickle.pdf

Leave a Reply

Please log in using one of these methods to post your comment:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s