Dilbert as an expository instantiation

A few recent posts have been first draft excerpts from my Information Systems Design Theory (ISDT) from emergent university e-learning systems. Being academics and hence somewhat pedantic about these things there are meant to be a number of specific components of an ISDT. One of these is the expository instantiation that is meant to act as both an explanatory device and a platform for testing (Gregor and Jones, 2007) i.e. it’s meant to help explain the theory and also examples of testing the theory.

The trouble is that today’s Dilbert cartoon is probably as good an explanation of what is currently the third principle of implementation for my ISDT.

Dilbert.com

I’m sure that most folk working in a context where they’ve had to use a corporate information system have experienced something like this. A small change – either to fix a problem or improve the system – simply can’t be made because of the nature of the technology or the processes used to make the changes. The inability to make these changes is a major problem for enterprise systems.

The idea from the ISDT is that the development and support team for an emergent university e-learning system should be able to make small scale changes quickly without having to push them up the governance hierarchy. Where possible the team should have the skills, insight, judgement and trust so that “small scale” is actually quite large.

An example

The Webfuse e-learning system that informed much the ISDT provides one example. Behrens (2009) quotes a user of Webfuse about one example of how it was responsive

I remember talking to [a Webfuse developer] and saying how I was having these problems with uploading our final results into [the Enterprise Resource Planning (ERP) system] for the faculty. He basically said, “No problem, we can get our system to handle that”… and ‘Hey presto!’ there was this new piece of functionality added to the system… You felt really involved… You didn’t feel as though you had to jump through hoops to get something done.

Then this is compared with a quote from one of the managers responsible for the enterprise system

We just can’t react in the same way that the Webfuse system can, we are dealing with a really large and complex ERP system. We also have to keep any changes to a minimum because of the fact that it is an ERP. I can see why users get so frustrated with the central system and our support of it. Sometimes, with all the processes we deal with it can take weeks, months, years and sometimes never to get a response back to the user.

Is that Dilbert or what?

The problem with LMS

Fulfilling this requirement is one of the areas where most LMS create problems. For most universities/orgnaisations it is getting into the situation where the LMS (even Moodle) is approaching the “complex ERP system” problem used in the last quote above. Changing the LMS is to fraught with potential dangers that these changes can’t be made quickly. Most organisations don’t try, so we’re back to a Dilbert moment.

Hence, I think there are two problems facing universities trying to fulfil principle #3:

  1. Having the right people in the support and development team with the right experience, insight and judgement is not a simple thing and is directly opposed to the current common practice which is seeking to minimise having these people. Instead there’s reliance on helpdesk staff and trainers.
  2. The product problem. i.e. it’s too large and difficult to change quickly and safely. I think there’s some interesting work to be done here within Moodle and other open source LMS. How do you balance the “flexibility” of open source with the complexity of maintaining a stable institutional implementation?

References

Behrens, S. (2009). Shadow systems: the good, the bad and the ugly. Communications of the ACM, 52(2), 124-129.

Gregor, S., & Jones, D. (2007). The anatomy of a design theory. Journal of the Association for Information Systems, 8(5), 312-335.

Justificatory knowledge

The following is a first version of the justificatory knowledge section of my ISDT for emergent university e-learning systems. Still fairly uncertain just how information is meant to go in here and also just how far I should go with the reference to other theories (there are lots) and how much time should be spent looking at the interactions between them.

If you have some literature/theories which support or contradict this approach, will be really happy to hear about it.

Justificatory knowledge

The purpose of the justificatory knowledge component is to provide an explanation of why the ISDT is structured as it is and why it should be expected to work appropriately. Much of the justificatory knowledge that underpins this ISDT has been described previously within the literature review (Chapter 2), the first Webfuse action research cycle (Chapter 4), and earlier in this chapter. To avoid repetition this section provides a summary and brief discussion of the justificatory knowledge underpinning the ISDT for emergent university e-learning systems. This summary is linked specifically to the ISDT’s principles for form and function, and principles of implementation.

The justificatory knowledge described below arose from the experiences obtained and literature read during the design and support of Webfuse. This knowledge described below is not necessarily complete or the only established knowledge – theoretical or otherwise – that could be used to justify the principles of the ISDT. Hovorka and Germonprez (2009) identify as a weakness of design research, the lack of guidance around the interaction between the various kernel theories that make up justificatory knowledge and how the influence of these kernel theories may change during use. To some extent, the context-sensitive, emergent nature of the approach embodied by this ISDT – and its kernel theories – means that such advice is embedded in the justificatory knowledge that supports the ISDT.

Justificatory knowledge for principles for form and function

Table 5.20 provides a summary of the justificatory knowledge and is followed by a brief description. For each the three categories of principles of form and function for this ISDT, Table 5.20 provides pointers to sections of this thesis and references to literature that describe the justificatory knowledge in more detail.

Table 5.20 – Summary of justificatory knowledge for principles of form and function
Principle Justificatory knowledge
Integrated and independent services Section 2.3.2 – Software wrappers (Bass, Clements et al. 1998; Sneed 2000)
Adaptive and inclusive architecture Systems of Systems (Perrochon and Mann 1999)
Section 2.3.2 – Best of breed (Light, Holland et al. 2001; Lowe and Locke 2008), Service Oriented Architectures (Chen, Chen et al. 2003; Weller, Pegler et al. 2005), End-user development (Eriksson and Dittrich 2007)
Section 4.4.4 – Micro-kernel architecture (Liedtke 1995)
Scaffolding, context-sensitive conglomerations Constructive templates (Nanard, Nanard et al. 1998) , End-user development (Eriksson and Dittrich 2007)

As summarised in chapter 4, a software wrapper is a type of encapsulation that enables software components to be encased in an alternative abstraction that enables clients, often in a new context, to access the wrapped components services (Bass, Clements et al. 1998; Sneed 2000). As such software wrappers are one example of an approach that provides integrated and independent software services.

Some of the relative advantages and limitations more tightly integrated systems is provided by the enterprise software literature. In this literature, comparisons between tightly integrated systems and best-of-breed approaches have argued that integration involves centralisation of processes and a consequently a tendency to reduce autonomy, increase rigidity, and reduce competitiveness (Light, Holland et al. 2001; Lowe and Locke 2008). The best-of-breed approach, focusing on a more inclusive integration of appropriate packages, increases system flexibility while at the same time requires greater time, skills and resources to integrate diverse applications (Light, Holland et al. 2001). Perrochon and Mann (1999) argue that traditional approaches to system architecture, even those with a focus on adaptivity, are appropriate for greenfield developments due to their reliance on the assumption of design (specify architecture) and then implement. The rise of component-oriented software has created the problem of systems of systems that require the combination of well-engineered components or systems into an overall system they were never, and could never be, designed for (Perrochon and Mann 1999).

The concept of constructive templates (Catlin, Garret et al. 1991; Nanard, Nanard et al. 1998) was developed in response to the difficulty faced by content providers in developing hypermedia structures that followed the known principles of interface and hypermedia design. Constructive templates helped content experts to create well designed hypermedia (Catlin, Garret et al. 1991).

Justificatory knowledge for principles of implementation

The justificatory knowledge for this ISDT’s principles of implementation – summarised in Table 5.21 and briefly described below – draws heavily on what is down about alternatives to traditional, plan-driven software development methodologies as discussed in Section 2.4 and Sections 5.3.1 and 5.3.2 of this chapter.

Table 5.21 – Summary of justificatory knowledge for principles of implementation
Principle Justificatory knowledge
Multi-skilled, integrated development and support team Job rotation, multi-skilling etc (Faegri, Dyba et al. 2010), Organisational learning (Seely Brown and Duguid 1991), Situated learning, Situated action, Communities of practice (Seely Brown and Duguid 1991), Knowledge-based theory of organizational capability (Grant 1996)
An adopter-focused, emergent development process Section 2.4 examines the topic of processes, including a comparison of traditional plan-driven processes (e.g. the SDLC) and learning-focused processes such as emergent development. Additional discussion occurs in Section 5.3.2
Section 5.3.1 introduces the conception of adopter-focused development.
A supportive organisational context Organisational fit (Hong and Kim 2002), Strategic alignment (Henderson and Venkatraman 1993), Bricolage (Chae and Lanzara 2006), Mindful innovation (Swanson and Ramiller 2004)

Seely Brown and Duguid (1991) argue that the tendency for education, training and technology design to focus on abstract representations that are detached from practice actually distort the intricacies of practice and consequently hinder how well practice can be understood, engendered, or enhanced. The idea of the development team integrated and embedded in the everyday practice of e-learning seeks to improve the learning of both academics and students about how to harness e-learning, and also improve the learning of the development team (and the organisation) about how e-learning is being used. The ISDT seeks to establish a process for supporting and developing e-learning which is situated in shared practice with a joint, collective purpose.

Faegri, Dyba et al (2010) argue that turbulent environments increase the importance of employee skills and competences and that having employees cycle through different jobs – such as developers being on helpdesk – can improve knowledge redundancy, organizational knowledge creation, and other benefits. Faegri, Dyba et al (2010) also cite Keil-Slawik (1992) as arguing that full understanding of software requires experience developing the software. The traditional hierarchical structures associated with the division of labour around the e-learning within universities – e.g. helpdesk and developers organized into separate units within an IT division; learning and teaching experts located in another division focused on learning and teaching; and, faculty academics located academic units – are seen by Grant (1996) to inhibit the ability to integrate knowledge from members of an organisation. Such integration is seen as fundamental to the organisation’s ability to create and sustain competitive advantage (Grant 1996).

There is significant literature (March 1991; Baskerville, Travis et al. 1992; Mintzberg 1994; Bamford and Forrester 2003) in a variety of disciplines that identifies plan-driven processes as the dominant approach in most organizations. This and related literature also examines the limitations this over-emphasis suffers, especially in contexts with rapid change or significant diversity (see Section 2.4). Consequently there is significant literature identifying both the theoretical basis and guidance (Introna 1996; Truex, Baskerville et al. 1999) and practical implementation methods (Beck 2000; Schwaber and Beedle 2002) for more emergent or adopter-based development processes.

An emergent, university e-learning information system is a large-scale information system. In this context, “large-scale” is used in the sense adopted by Chae and Lanzara (2006), as referring to systems that involve both organisational technologies and technological innovations that “comprise and connect multiple communities of practice within an organisation or between organistions”. Literature examining success factors with information systems development (e.g. Ewusi-Mensah 1997; Scott and Vessey 2002) has long considered it vital for senior management to be supportive of and committed to systems development. Brown et al (2007) identify commitment – defined as the resources dedicated to IT, organisational dedication to change procedures, and top management support – as one of two most cited problems in the IS projects they examined and identified it as the factor most cited within the literature.

Organisational fit (Hong and Kim 2002) and strategic alignment (Henderson and Venkatraman 1993) between various aspects of an organisation and its information technology systems and processes have long been argued as critical success factors. A similar importance on having an organisational context that is committed and appropriate to information systems development is also found in approaches that are less traditional or teleological (e.g. bricolage and mindful innovation) and have more in common with the emergent, adopter-focused approach advocate in this ISDT. Collective or organisational bricolage requires the combined effort of several individuals and groups (Chae and Lanzara 2006). An organisation which is mindful in innovating with IT, uses reasoning grounded in its own organisational facts and specifics when thinking about the innovation, the organisation recognises that context matters (Swanson and Ramiller 2004). Within mindful innovation, management have a responsibility to foster conditions that prompt collective mindfulness (Swanson and Ramiller 2004).

References

Bamford, D., & Forrester, P. (2003). Managing planned and emergent change within an operations management environment. International Journal of Operations and Production Management, 23(5), 546-564.

Baskerville, R., Travis, J., & Truex, D. (1992). Systems without method: the impact of new technologies on information systems development projects. In K. E. Kendall (Ed.), The Impact of Computer Supported Technologies on Information Systems Development (pp. 241-251). Amsterdam: North-Holland.

Bass, L., Clements, P., & Kazman, R. (1998). Software Architecture in Practice. Boston: Addison-Wesley.

Beck, K. (2000). Extreme Programming Explained: Embrace Change: Addison-Wesley.

Brown, S., Chervany, N., & Reinicke, B. (2007). What matters when introducing new information technology. Communications of the ACM, 50(9), 91-96.

Catlin, K., Garret, L. N., & Launhardt, J. (1991). Hypermedia Templates: An Author’s Tool. Paper presented at the Proceedings of Hypertext’91.

Chae, B., & Lanzara, G. F. (2006). Self-destructive dyamics in large-scale technochange and some ways of conteracting it. Information Technology & People, 19(1), 74-97.

Chen, M., Chen, A., & Shao, B. (2003). The implications and impacts of web services to electronic commerce research and practices. Journal of Electronic Commerce Reseaerch, 4(4), 128-139.

Eriksson, J., & Dittrich, Y. (2007). Combining tailoring and evolutionary software development for rapidly changing business systems. Journal of Organizational and End User Computing, 19(2), 47-64.

Ewusi-Mensah, K. (1997). Critical Issues in Abandonded Information Systems Development Projects. Communications of the ACM, 40(9), 74-80.

Faegri, T. E., Dyba, T., & Dingsoyr, T. (2010). Introducing knowledge redundancy practice in software development: Experiences with job rotation in support work. Information and Software Technology, 52(10), 1118-1132.

Grant, R. (1996). Prospering in dynamically competitive environments: organizational capability as knowledge integration. Organization Science, 7(4), 357-387.

Henderson, J., & Venkatraman, N. (1993). Strategic alignment: Leveraging information technology for transforming organizations. IBM Systems Journal, 32(1), 4-16.

Hong, K.-K., & Kim, Y.-G. (2002). The critical success factors for ERP implementation: an organizational fit perspective. Information & Management, 40(1), 25-40.

Hovorka, D., & Germonprez, M. (2009). Tinkering, tailoring and bricolage: Implications for theories of design. Paper presented at the AMCIS 2009.

Introna, L. (1996). Notes on ateleological information systems development. Information Technology & People, 9(4), 20-39.

Keil-Slawik, R. (1992). Artifacts in software design. In C. Floyd, H. Zullighoven, R. Budde & R. Keil-Slawik (Eds.), Software Development and Reality Construction (pp. 168-188). Berlin: Springer-Verlag.

Liedtke, J. (1995). On micro-kernel construction. Operating Systems Review, 29(5), 237-250.

Light, B., Holland, C., & Wills, K. (2001). ERP and best of breed: a comparative analysis. Business Process Management Journal, 7(3), 216-224.

Lowe, A., & Locke, J. (2008). Enterprise resource planning and the post bureaucratic organization. Information Technology & People, 21(4), 375-400.

March, J. (1991). Exploration and exploitation in organizational learning. Organization Science, 2(1), 71-87.

Mintzberg, H. (1994). The rise and fall of strategic planning: Reconceiving roles for planning, plans, planners. New York: Free Press.

Nanard, M., Nanard, J., & Kahn, P. (1998). Pushing Reuse in Hypermedia Design: Golden Rules, Design Patterns and Constructive Templates. Paper presented at the Proceedings of the 9th ACM Conference on Hypertext and Hypermedia.

Perrochon, L., & Mann, W. (1999). Inferred Designs. IEEE Software, 16(5), 46-51.

Schwaber, K., & Beedle, M. (2002). Agile Software Development with Scrum. Upper Saddle River, NJ: Prentice-Hall.

Scott, J., & Vessey, I. (2002). Managing risks in enterprise systems implementations. Communications of the ACM, 45(4), 74-81.

Seely Brown, J., & Duguid, P. (1991). Organizational learning and communities-of-practice: Toward a unified view of working, learning, and innovation. Organization Science, 2(1), 40-57.

Sneed, H. (2000). Encapsulation of legacy software: A technique for reusing legacy software components. Annals of Software Engineering, 9(1-4), 293-313.

Swanson, E. B., & Ramiller, N. C. (2004). Innovating mindfully with information technology. MIS Quarterly, 28(4), 553-583.

Truex, D., Baskerville, R., & Klein, H. (1999). Growing systems in emergent organizations. Communications of the ACM, 42(8), 117-123.

Weller, M., Pegler, C., & Mason, R. (2005). Students’ experience of component versus integrated virtual learning environments. Journal of Computer Assisted Learning, 21(4), 253-259.

Principles of form and function

The aim of my thesis is to formulate an information systems design theory for e-learning. Even though I have a publication or two that have described early versions of the ISDT, I’ve never been really happy with them. However, I’m getting close to the end of this process, at least for the purposes of getting the thesis submitted.

The following is a first draft of the “Principles of form and function”, one of the primary components of an ISDT as identified by Gregory and Jones (2007). I’ll be putting up a draft of the principles of implementation in a little while (UPDATE principles of implementation now up). These are still just approaching first draft stage, they need a bit more reflection and some comments from my esteemed supervisor. Happy to hear thoughts.

By the way, the working title for this ISDT is now “An ISDT for emergent university e-learning systems”.

Principles of form and function

Gregor and Jones (2007) describe the aim of the principles of form and function as defining the structure, organisation, and functioning of the design product or design method. The ISDT described in Chapter 4 was specifically aimed at the World-Wide Web as shown in its title, “An ISDT for web-based learning systems”. Such technology specific assumptions are missing from the ISDT described in this chapter to avoid technological obsolescence. By not relying on a specific technology the ISDT can avoid a common problem with design research – the perishability of findings – and, enable the on-going evolution of any instantiation to continue regardless of the technology.

The principles of form and function for this ISDT are presented here as divided into three groupings: integrated and independent services; adaptive and inclusive architecture; and, scaffolding, context-sensitive conglomerations. Each of these groupings and the related principles are described in the following sub-sections and illustrated through examples from Webfuse. The underlying aim of the following principles of form and function is to provide a system that is easy to modify and focused on providing context-specific services. The ISDT’s principles of implementation (Section 5.6.4) are designed to work with the principles of form and function in order to enable the design of an emergent university e-learning information system.

Integrated and independent services

The emergent nature of this ISDT means that, rather than prescribe a specific set of services that an instantiation should provide, the focus here is on providing mechanisms to quickly add and modify new services in response to local need. It is assumed that an instantiation would provide an initial set of services (see principle 4) with which system use could begin. Subsequent services would be added in response to observed need.

An emergent university e-learning system should:

  1. Provide a method or methods for packaging and using necessary e-learning services from a variety of sources and of a variety of types.
    For example, Webfuse provided two methods for user-level packaging services: – page types and Wf applications – and also used design patterns and object-oriented design for packging of implementation level services. The types of services packaged through these means included: information stored in databases; various operations on that data; external services such as enterprise authentication services; open source COTS; and, remote applications such as blogging tools.
  2. Provide numerous ways to enable different packages to interact and integrate.
    Webfuse provided a number of methods through which the packaging mechanisms described in the previous point could be integrated. For example, Wf applications provided a simple, consistent interface that enabled easy integration from numerous sources. It was through this approach that Wf applications such as email merge, course list, and course photo album were integrated into numerous other services. To allow staff experience what students say on StudentMyCQU, the ViewStudentMyCQU application was implemented as a wrapper around the StudentMyCQU application.
  3. Provide a packaging mechanism that allows for a level of independence and duplication.
    Within Webfuse, modifications to page types could be made with little or no effect on other page types. It was also possible to have multiple page types of the same type. For example, there were three different web-based discussion forums with slightly different functionality preferred by different users. Similarly, the use of the Model-View-Controller design pattern in Wf applications enabled the same data to be represented in many different forms. For example, class lists could be viewed by campus, with or without student photos, as a CSV file, as a HTML page etc.
  4. Provide an initial collection of services that provide a necessary minimum of common e-learning functionality covering: information distribution, communication, assessment, and administration.
    The initial collection of services for Webfuse in 2000 included the existing page types and a range of support services (see Section 4.4.3). These provided an initial collection of services that provided sufficient services for academics to begin using e-learning. It was this use that provided the opportunity to observe, learn and subsequently add, remove and modify available services (see Section 5.3).
  5. Focus on packaging existing software or services for integration into the system, rather than developing custom-built versions of existing functionality.
    With Webfuse this was mostly done through the use of the page types as software wrappers around existing open source software as described in Chapter 4. The BAM Wf application (see 5.3.6) integrated student use of existing blog engines (e.g. http://wordpress.com) into Webfuse via standardised XML formats.
  6. Present this collection of services in a way that for staff and students resembles a single system.
    With Webfuse, whether users were managing incidents of academic misconduct, finding the phone number of a student, responding to a student query on a discussion forum, or uploading a Word document they believed they were using a single system. Via Staff MyCQU they could access all services in a way that fit with their requirements.
  7. Minimise disruption to the user experience of the system.
    From 1997 through 2009, the authentication mechanism used by Webfuse changed at least four times. Users of Webfuse saw no visible change. Similarly, Webfuse page types were re-designed from purely procedural code to being heavily object-oriented. The only changes in the user interface for page types were where new services were added.

Adaptive and inclusive architecture

Sommerville (2001) defines software architecture as the collection of sub-systems within the software and the framework that provides the necessary control and communication mechanisms for these sub-systems. The principles for integrated and independent services described in the previous section are the “sub-systems” for an emergent university e-learning system. Such as a system, like all large information systems, needs some form of system architecture. The major difference for this ISDT is that traditional architectural concerns such as consistency and efficiency are not as important as being adaptive and inclusive.

The system architecture for an emergent university e-learning system should:

  1. Be inclusive by supporting the integration and control of the broadest possible collection of services.
    The approach to software wrappers adopted as part of the Webfuse page types, was to enable the integration of any external service at the expense of ease of implementation. Consequently, the Webfuse page types architecture integrated a range of applications using very different software technologies including a chat room that was a Java application; a page counter implemented in the C programming language; a lecture page type that combined numerous different applications; and, three different discussion forums implemented in Perl. In addition to the page types, Webfuse also relied heavily on the architecture provided by the Apache web server for access control, authentication, and other services. The BAM Wf application (Section 5.3.6) used RSS and Atom feeds as a method for integrating disparate blog applications. Each of these different approaches embody very different architectural models which increase the cost of implementation, but also increase the breadth of services that can be integrated and controlled.
  2. Provide an architecture that is adaptive to changes in requirements and context.
    One approach is the use of an architectural model that provides high levels of maintainability through fine-grained, self-contained components (Sommerville 2001). This was initially achieved in Webfuse through the page types architecture. However, in order to achieve a long-lived information system there is a need for more than this. Sommerville (2001) suggests that major architectural changes are not a normal part of software maintenance. As a system that operated for 13 years in a Web-environment, Webfuse had to undergo major architectural changes. In early 2000, performance problems arose due to increased demand for dynamic web applications (student quizzes) resulting in a significant change in Webfuse architecture. This change was aided through Webfuse’s reliance on the Apache web server and its continual evolution that provided the scaffolding for this architectural change.

The perspective for this ISDT is that traditional homogenous approaches to software architecture (e.g. component architectures) offer numerous advantages. However, there are some drawbacks. For example, a component architecture can only integrate components that have been written to meet the specifications of the component architecture. Any functionality not available within that component architecture, is not available to the system. To some extent such a limitation closes off possibilities for diversity – which this ISDT views as inherent in university learning and teaching – and future emergent development. This does not rule out the use of component architectures within an emergent university e-learning system, but it does mean that such a system would also be using other architectural models at the same time to ensure it was adaptive and inclusive.

Scaffolding, context-sensitive conglomerations

The design of e-learning in universities requires the combination of skills from a variety of different professions (e.g. instructional design, web design etc), and yet is often most performed by academics with limited knowledge of any of these professions. This limited knowledge creates significant workload for the academics and contributes to the limited quality of much e-learning. Adding experts in these fields to help course design is expensive and somewhat counter to the traditional practice of learning and teaching within universities. This suggests that e-learning in universities has a need for approaches that allow the effective capture and re-use of expertise in a form that can be re-used by non-experts without repeated direct interaction with experts. Such an approach could aim to reduce perceived workload and increase the quality of e-learning.

An emergent university e-learning information system should:

  1. Provide the ability to easily develop, including end user development, larger conglomerations of packaged services.
    A conglomeration is not simply an e-learning service such as a discussion forum. Instead it provides additional scaffolding around such services, possibly combining multiple services, to achieve a higher-level task. While many conglomerations would be expert designed and development, offering support for end-user development would increase system flexibility. The Webfuse default course site approach (Section 5.3.5) is one example of a conglomeration. A default course site combines a number of separate page types (services), specific graphical and instructional designs, and existing institutional content into a course website with a minimum of human input. Another form of conglomeration that developed with Webfuse was Staff MyCQU. This “portal” grew to become a conglomeration of integrated Wf applications designed to package a range of services academics required for learning and teaching.
  2. Ensure that conglomerations provide a range of scaffolding to aid users, increase adoption and increase quality.
    There is likely to be some distance between the knowledge of the user and that required to effectively use e-learning services. Scaffolding provided by the conglomerations should seek to bridge this distance, encourage good practice, and help the user develop additional skills. For example, over time an “outstanding tasks” element was added to Staff MyCQU to remind staff of unfinished work in a range of Wf applications. The BAM Wf application was designed to support the workload involved in tracking and marking individual student reflective journals (Jones and Luck 2009). A more recent example focused more on instructional design is the instructional design wizard included in the new version of the Desire2Learn LMS. This wizard guides academics through course creation via course objectives.
  3. Embed opportunities for collaboration and interaction into conglomerations.
    An essential aim of scaffolding conglomerations is enabling and encouraging academics to learn more about how to effectively use e-learning. While the importance of community and social interaction to learning is widely recognised, most professional development opportunities occur in isolation (Bransford, Brown et al. 2000). Conglomerations should aim to provide opportunities for academics to observe, question and discuss use of the technology. Examples from Webfuse are limited to the ability to observe. For example, all Webfuse course sites were, by default, open for all to see. The CourseHistory Wf application allowed staff to see the grade breakdown for all offerings of any course. A better example would have been if the CourseHistory application encouraged and enabled discussions about grade breakdowns.
  4. Ensure that conglomerations are context-sensitive.
    Effective integration with the specific institutional context enables conglomerations to leverage existing resources and reduce cognitive dissonance. For example, the Webfuse default course site conglomeration was integrated with a range of CQU specific systems, processes and resources. The Webfuse online assignment submission system evolved a number of CQU specific features that significantly increased perceptions of usefulness and ease-of-use (Behrens, Jamieson et al. 2005).

References

Behrens, S., Jamieson, K., Jones, D., & Cranston, M. (2005). Predicting system success using the Technology Acceptance Model: A case study. Paper presented at the Australasian Conference on Information Systems’2005, Sydney.

Bransford, J., Brown, A., & Cocking, R. (2000). How people learn: brain, mind, experience, and school. Washington, D.C.: National Academy Press.

Gregor, S., & Jones, D. (2007). The anatomy of a design theory. Journal of the Association for Information Systems, 8(5), 312-335.

Jones, D., & Luck, J. (2009). Blog Aggregation Management: Reducing the Aggravation of Managing Student Blogging. Paper presented at the World Conference on Education Multimedia, Hypermedia and Telecommunications 2009. from http://www.editlib.org/p/31530.

Sommerville, I. (2001). Software Engineering (6th ed.): Addison-Wesley.

How strict a blueprint do ISDTs provide?

Am working on the final ISDT for the thesis. An Information Systems Design Theory (ISDT) is a theory for design and action. It is meant to aim to provide general principles that help practitioners design information systems. Design theory provides guidance about how to build an artifact (process) and what the artifact should look like when built (product/design principles) (Walls, Widmeyer et al. 1992; Gregor 2002). Walls et al (1992) see an ISDT as an integrated set of prescriptions consisting of a particular class of user requirements (meta-requirements), a type of system solution with distinctive features (meta-design) and a set of effective development practices (meta-design). Each of these components of an ISDT can be informed by kernel theories, either academic or practitioner theory-in-use (Sarker and Lee 2002), that enable the formulation of empirically testable predictions relating the design theory to outcomes (Markus, Majchrzak et al. 2002).

My question

I’ve just about happy with the “ISDT for emergent university e-learning systems” that I’ve developed. A key feature of the ISDT is the “emergent” bit. This implies that the specific context within which the ISDT might be applied is going to heavily influence the final system. To some extent there is a chance that aspects of the ISDT should be ignored based on the nature of the specific context. Which brings me to my questions:

  1. How far can the ISDT go in saying, “ignore principle X” if it doesn’t make sense?
  2. How much of the ISDT has to be followed for the resulting system to be informed by the ISDT?
  3. If most of the ISDT is optional based on contextual factors, how much use is the ISDT?
  4. How much and what sort of specific guidance does an ISDT have to give to be useful and/or worthwhile?

Class of systems

One potential line of response to this is based on the “class of systems” idea. The original definition provided by Walls et al (1992) for the meta-design component indicates that it “Describes a class of artefacts hypothesized to meet the meta-requirements” and not a specific instantiation. van Aken (2004) suggests that rather than a specific prescription for a specific situation (an instantiation), the intent should be for a general prescription for a class of problems. van Aken (2004) arrives at this idea through the use of Bunge’s idea of a technological rule.

van Aken (2004) goes onto explain the role of the practitioner in the use of a technological rule/ISDT

Choosing the right solution concept and using it as a design exemplar to design a specific variant of it presumes considerable competence on the part of practitioners. They need a thorough understanding both of the rule and of the particulars of the specific case and they need the skills to translate the general into the specific. Much of the training of students in the design sciences is devoted to learning technological rules and to developing skills in their application. In medicine and engineering, technological rules are not developed for laymen, but for competent professionals.

This seems to offer some support for the idea that this problem, is not really a problem.

Emergent

It appears that the idea of “emergent” is then just an increase in emphasis on context than is generally the case in practice. There is, I believe, a significant difference between emergent/agile development and traditional approaches, it’s probably worthwhile making the distinction in a mild way when introducing the ISDT and then reinforcing this in the artifact mutability and principles of implementation section.

The first stab

The following paragraph is a first draft of the last paragraph in the introduction to the ISDT. It starts alright, but I’m not sure I’ve really captured (or understand) what I’m trying to get at with this. Is it just an attempt to signpost perspectives included below? Need to be able to make this clearer I think.

It is widely accepted that an ISDT – or the related concept of technological rule – are not meant to describe a specific instantiation, but instead to provide a general prescription for a class of problems (Walls, Widmeyer et al. 1992; van Aken 2004). The ISDT presented here is intended to offer a prescription for e-learning information systems for universities. In addition to this general class of problems, the ISDT presented here also includes in its prescription specific advice – provided in the principles of implementation, and artifact mutability components of the ISDT – to be more somewhat more general again. This is captured in the use of the word “emergent” in the title of the ISDT and intended in the sense adopted by Truex et al (1999) where “organisational features are products of constant social negotiation and consensus building….never arriving but always in transition”. This suggests the possibility that aspects of this ISDT may also be subject to negotiation within specific social contexts and subsequently not always seen as relevant.

References

Gregor, S. (2002). Design Theory in Information Systems. Australian Journal of Information Systems, 14-22.

Markus, M. L., Majchrzak, A., & Gasser, L. (2002). A Design Theory for Systems that Support Emergent Knowledge Processes. MIS Quarterly, 26(3), 179-212.

van Aken, J. (2004). Management research based on the paradigm of the design sciences: The quest for field-tested and grounded technological rules. Journal of Management Studies, 41(2), 219-246.

Walls, J., Widmeyer, G., & El Sawy, O. A. (1992). Building an Information System Design Theory for Vigilant EIS. Information Systems Research, 3(1), 36-58.

Light-weight analytics tools as part of scaffolding, context-sensitive conglomerations

A couple of days ago I floated the idea of scaffolding, context-sensitive conglomerations as one idea/model/suggestion for how e-learning systems (currently mostly LMS, but hopefully other models will arise).

George Siemens has posted about light-weight analytics tools such as SNAPP. Both the comments on that post are, to my current somewhat focused/biased perspective, suggestions for the need for scaffolding conglomerations. Both comments are from practitioners who talk about how the supplement their use of discussion forums with other forms of representation. It would appear obvious that these combinations of tools are useful. I’m pretty sure you could find quite a few talented and motivated academics across the world that are using this combination. I’m also pretty sure that few of them would be located within the same institution.

Are there any discussion forum tools in e-learning systems that already provide this sort of scaffolding for users? Are there any IT departments in universities that have recognised this need and are helping academics make this connection?

I’m not aware of any, and this suggests to me that there are some fundamental problems with the way these systems are being supported and structured. i.e. current approaches mean it is unlikely for these sorts of networks of tools/conglomerations to arise.

SNAPP has used a good approach that makes it simpler to create these conglomerations, through the use of browser plugins. But the advantages of that approach come with a negative. i.e. I don’t believe you can currently generate a SNAPP visualisation for a group of courses (e.g. to see how the students/staff in a program are interacting), or compare visualisations between different courses. You also can’t easily combine SNAPP with other context specific data sources such as student records system etc.

Consequently, SNAPP is a great example of a tool that enables a “scaffolding conglomeration” when combined with an LMS discussion forum. But it still remains difficult to add the “context-sensitive” component.

I think there’s value in exploring how SNAPP and similar tools can be used as both scaffolding and context-sensitive conglomerations, and more importantly, what impact it can have on the practice of teachers, and subsequently the quality of learning.

Adding advice

While I remember, there’s a next step that I’d like to see a “scaffolding, context-sensitive conglomeration” take. Advice, examples and connections.

For example, assume I’m teaching a course, I use a discussion forum and I’ve designed its use for a specific pedagogic purpose. I’ve installed SNAPP and to my horror discover a problem. What do I do? What strategies can I employ to address this problem? What strategies have other academics in similar (or even different situations) used? What happened? Can I get their contact details so I can have a chat?

I would imagine that this addition could also be implemented for students who discovered a “bad” pattern in their own practice. They could receive advice, examples and connections from other students.

The learning analytics group seems to include a leaning towards “intelligent”/”adaptive” software to provide this sort of service. I’m more interested in how we can use these tools to connect people and provide the scaffolding that enables and encourages them to take some action.

Misc. reflections on reading about situated cognition

For various reasons, mostly PhD related (and somewhat related to procrastination), I’m taking the time to read a bit more about situated cognition. Not sure how far it will go. The following are some ad hoc reflections and essentially a diary of what I’m reading. Not aiming for this post to fulfil any purpose beyond being a place to dump observations.

The wikipedia page

So far, the Wikipedia page on situated cognition seems fairly extensive and a reasonable place to start.

Misapplication of community of practice?

The wikipedia page has the following definition of community of practice

The concept of a **community of practice** (often abbreviated as CoP) refers to the process of social learning that occurs and shared sociocultural practices that emerge and evolve when people who have common goals interact as they strive towards those goals.

I find this somewhat interesting in that my experience with CoPs around university learning and teaching has been with special groups set up for specific purposes above and beyond normal teaching. i.e. rather than have a CoP around teaching at university X, where the common purpose is to teach. A CoP is set up around attrition, graduate attributes etc and focuses on that as the goal, rather than the teaching.

I do wonder whether this on-going ad hoc creation of CoPs around special topics that are important, but haven’t been embedded into common institutional practice is a symptom of CoP misuse. i.e. if normal practice of teaching within an institution was more like a CoP, would you really need a separate CoP on retention etc? Does the need for separate CoPs indicate that the normal practice of teaching within an institution isn’t like a CoP and hence, perhaps there isn’t a sense of a common purpose amongst those involved in the process of normal teaching? Instead of a common purpose, do the actors within an institution’s normal practice of teaching and learning have their own different purposes?

The glossary from which this definition comes highlights the amount of though and subsequently special language that has arisen around situated cognition. Also has some interesting resonance with the need for design theories to have a constructs section.

Affordances

Interesting to see some of the origins of the concept of affordances beyond Norman and HCI/usability. The idea that affordances are the individual’s interpretations about what action is possible within the given environment through their perception of the environment connects strongly with some of the problems I have around the stereotypical university environment around teaching and the nature of e-learning systems. i.e. I think the affordances seen by many teaching staff aren’t good in terms of improving learning and teaching.

The relationship between affordances and schemata seems an area of some disquiet and more reading – Glenberg and Robertson (1999)

Perception

This section was a little disappointing, it only mentions visual perception. While this is apparently an importent influence on situated cognition, even from my limited reading and knowledge there appears to have been a lot more work done on perception.

Memory

Again I feel there could be more here. But it does pose the interesting question of how situated cognition is downplaying the importance of stored, symbolic representations in memory. Instead having a belief that perception and action are co-determined by effectivities and affordances… Raises the question about what is
learning and knowing (which are covered next). Also links back to the disquiet about the link between affordances and schemata.

Knowing and learning

So knowing is not a think, a memory, but a verb, it is action/participation of an agent in an environment. This is where the idea that knowledge cannot be separate from context. It gives rise to the importance of context.

This is interesting, challenging and somewhat comforting. It is comforting because to some aspect it represents an idea embedded in how Webfuse worked. For Webfuse, context was important. Webfuse wasn’t a general purpose tool that could be used elsewhere, Webfuse could not be separate from its context. Mmm, situated cognition as a kernel theory for the ISDT and Webfuse?

It does seem that some of these sections have been made specifically very narrow and focussing on language/literacy learning.

Pedagogical implications

So, situated cognition is the theory of “mind/knowing/learning etc”, while cognitive apprenticeship etc are instructional design theories drawing on that theory, it appears.

Critiques

A small section on critiques close off the page. On the face of it, the critiques do a reasonable job of removing many of the assumptions on which situated cognition is based. Need to have a look further into Anderson et al (2000).

Of course the criticisms arise from cognitivists – more information processing types – who hold a perspective that has also been challenged. Interesting that it appears that Herbert Simon is one of the critiques (last author on Anderson et al).

References

Anderson, J. R., Greeno, J. G., Reder, L. M., & Simon, H. A. (2000). Perspectives on learning, thinking, and activity. Educational Researcher, 29, 11-13.

Scaffolding, context-sensitive conglomerations in e-learning systems

For the last week or so I’ve been attempting to bring together the principles that underpin the design theory for e-learning that will be the main contribution of my thesis. This post summarises one of the principles of form and function that is emerging from the last week or so. I using this blog post to escape the confines of PhD-ese and see if writing about it can generate some further refinement.

Am aiming for brevity and clarity in the following.

A design theory contains principles for form and function; and for implementation. The following is more form and function, while the previous post is more implementation. There is more to the ISDT than just these two posts.

The problem

The functionality provided by most e-learning systems are in the form of low-level primitive tasks (e.g. upload a document, add a discussion forum, create a quiz). Most e-learning systems provide a fairly large collection of these low-level features. Many of these features, because they are designed for the general case, come with large numbers of options and configuration settings so that the task can be tweaked to the broadest collection of uses.

Consequently, achieving a high-level task (e.g. supporting a discussion forum that encourages student-to-student collaboration, or creating an educationally well-designed course website) requires a significant amount of knowledge, skills and time on the part of teaching academics. Some (perhaps much) of the time spent by teachers in leveraging these low-level, very general features is expended on bridging the gap between the generality of the feature set and the specifics of the context. Much of the time is spent trying to translate and wrangle what is known about good practice into the specifics required to implement it with the low-level feature set of the e-learning system.

I suggest that these difficulties limit the quality and quantity of how these feature sets are used. These difficulties appear to be one of the factors that contribute to the on-going fairly poor quality of most e-learning within formal education settings, especially universities.

Scaffolding, context-sensitive conglomerations as a solution?

The idea is that an e-learning system should provide the ability to create “scaffolding, context-sensitive, conglomerations” of its low-level feature set.

Examples

An example of this is the default course site “conglomeration” used in the Webfuse system. This is the system I designed and forms the basis for my PhD. So you can see where the idea has come from. The default course sites conglomeration was aimed at making it very simple for academics to create a default course site. So simple, in fact, that if they wanted to, they didn’t have to do anything.

Another possible example of a “conglomeration” from my own work could be the Moodle module BIM. BIM is a conglomeration of external blog engines (e.g. WordPress.com and various Moodle features, especially the gradebook. The BIM “conglomeration” is designed to make it simpler for teachers to manage students using individual blogs for assessment and other purposes. It provides a bridge between the external blogs and Moodle’s making/management features.

Moving further afield, the work being done by Desire2Learn with its instructional design wizard provide another approach to the provision of a conglomeration. The “Wizard” approach is used.

Conglomerations

In this context, a conglomeration is essentially a way to group together the existing low-level functionality provided by the e-learning system into something at a much higher level of abstraction. The term conglomeration has been chosen specifically to avoid terms like component, framework, package etc that, at least with some technical systems, refer to fairly specific ways of combining technology features. I’m trying to avoid these terms for a range of reasons, including:

  • Non-specificity;
    The aim of the ISDT (information systems design theory) is to provide broad guidance that is not specific to a particular approach or technology.
  • Inclusivity;
    Most of the technical approaches to grouping functional (e.g. component-based architectures) are not inclusive. i.e. if you’re using architecture X, you can only group features that are implemented using architecture X. While recognising there’s always going to be a practical need for something like this, with my ISDT I am trying to argue that for e-learning systems, the conglomeration mechanism needs to be as inclusive as possible (e.g. BIM’s reliance on RSS/Atom feeds – loose coupling – rather than a specific API for a particular blog service).
  • User focus.
    As part of all this the conglomerations only have to group these features from the perspective of the user. It doesn’t actually mean that they are technically grouped through the use of the same architecture. What’s important is that the user experience with the conglomeration leads them to believe the different bits of low-level functionality are integrated and working together.

Context-sensitive

Context-sensitive implies that the conglomerations know something about and offer support for factors or knowledge that is specific to the context of the people using the conglomeration. i.e. it’s not such a general purpose tool as to require the user to bridge the gap between their context and the tool.

For example, the default course site approach within Webfuse was designed to know about and integrate with as much of the local context as possible. The course synopsis, details about the assessment, staff details etc were automatically drawn from institutional databases and available within the conglomeration. In a more able and educationally enlightened context, the default course site conglomeration might have known about and offered specific support for the use of institutional graduate attributes or course learning outcomes.

Scaffolding

This aspect is still a work in progress and builds somewhat on the context-sensitive attributed. The term scaffolding was chosen because of the connection between this idea and situated/distributed cognition, cognitive apprenticeship etc. The idea is that the e-learning system should be designed in a way to help the teachers (and perhaps students) learn about using the system effectively.

The assumption is that for most teachers using the e-learning system to improve and/or change their teaching practice is a learning process. They haven’t done this before. Rather than treat learning about how to make this change a separate professional development activity, the e-learning embodies/embeds the learning into its conglomerations. In some way, the system adopts an approach that includes situated modelling, coaching and fading.

Collins et al (1991) define it this way

When scaffolding is provided by a teacher, it involves the teacher in executing parts of the task that the student cannot yet manage. A requisite to such scaffolding is accurate diagnosis of the student’s current skill level or difficulty and the availability of an intermediate step at the appropriate level of difficulty in carrying out the target activity. Fading involves the gradual removal of supports until students are on their own.

Am still considering the implications of this addition and how far to take it/interpret it. Potentially this could suggest that the system have a model of the teachers’ abilities and be “intelligent”. I don’t see this as being a requirement. An equally plausible, and probably more likely, approach would be for this diagnosis to be performed by people.

Need to think this through some more and see how much more of the insights offered by the learning theories this idea is based on could/should be used.

References

Collins, A., Brown, J. S., & Holum, A. (1991). Cognitive apprenticeship: Making thinking visible. American Educator(Winter), 6-11, 38-46.

Situated shared practice, curriculum design and academic development

Am currently reading Faegri et al (2010) as part of developing the justificatory knowledge for the final ISDT for e-learning that is meant to be the contribution of the thesis. The principle from the ISDT that this paper connects with is the idea of a “Multi-skilled, integrated development and support team” (the name is a work in progress). The following is simply a placeholder for a quote from the paper and a brief connection with the ISDT and what I think it means for curriculum design and academic development.

The quote

The paper itself is talking about an action research project where job rotation was introduced into a software development firm with the aim of increasing the quality of the knowledge held by software developers. The basic finding was that in this case, there were some benefits, however, the problems outweighed them. I haven’t read all the way through, I’m currently working through the literature review. The following quote is from the review.

Key enabling factors for knowledge creation is knowledge sharing
and integration [36,54]. Research in organizational learning has emphasized the value of practice; people acquire and share knowledge in socially situated work. Learning in the organization occurs in the interplay between tacit and explicit knowledge while it crosses boundaries of groups, departments, and organizations as people participate in work [17,54]. The process should be situated in shared practice with a joint, collective purpose [12,14,15].

Another related quote

The following is from a bit more related reading, in particular Seely Brown & Duguid (1991) – emphasis added

The source of the oppositions perceived between working, learning, and innovating lies primarily in the gulf between precepts and practice. Formal descriptions of work (e.g., “office procedures”) and of learning (e.g., “subject matter”) are abstracted from actual practice. They inevitably and intentionally omit the details. In a society that attaches particular value to “abstract knowledge,” the details of practice have come to be seen as nonessential, unimportant, and easily developed once the relevant abstractions have been grasped. Thus education, training, and technology design generally focus on abstract representations to the detriment, if not exclusion of actual practice. We, by contrast, suggest that practice is central to understanding work. Abstractions detached from practice distort or obscure intricacies of that practice. Without a clear understanding of those intricacies and the role they play, the practice itself cannot be well understood, engendered (through training), or enhanced (through innovation).

Relevance?

I see this as highly relevant to the question of how to improve learning and teaching in universities, especially in terms of the practice of e-learning, curriculum design and academic development. It’s my suggestion that the common approaches to these tasks in most universities ignore the key enabling factors mentioned in the above quote.

For example, the e-learning designers/developers, curriculum designers and academic developers are generally not directly involved with the everyday practice of learning and teaching within the institution. As a result the teaching academics and these other support staff don’t get the benefit of shared practice.

A further impediment to shared practice is the divisions between e-learning support staff, curriculum designers and academic developers that are introduced by organisational hierarchies. At one stage, I worked at a university where the e-learning support people reported to the IT division, the academic staff developers reported to the HR division, the curriculum designers reported to the library, and teaching academics were organised into faculties. There wasn’t a common shared practice amongst these folk.

Instead, any sharing that did occur was either at high level project or management boards and committees, or in design projects prior to implementation. The separation reduce the ability to combine, share and create new knowledge about what was possible.

The resulting problem

The following quote is from Seely Brown and Duiguid (1991)

Because this corporation’s training programs follow a similar downskilling approach, the reps regard them as generally unhelpful. As a result, a wedge is driven between the corporation and its reps: the corporation assumes the reps are untrainable, uncooperative, and unskilled; whereas the reps view the overly simplistic training programs as a reflection of the corporation’s low estimation of their worth and skills. In fact, their valuation is a testament to the depth of the rep’s insight. They recognize the superficiality of the training because they are conscious of the full complexity of the technology and what it takes to keep it running. The corporation, on the other hand, blinkered by its implicit faith in formal training and canonical practice and its misinterpretation of the rep’s behavior, is unable to appreciate either aspect of their insight.

It resonates strongly with some recent experience of mine at an institution rolling out a new LMS. The training programs around the new LMS, the view of management, and the subsequent response from the academics showed some very strong resemblances to the situation described above.

An alternative

One alternative, is what I’m proposing in the ISDT for e-learning. The following is an initial description of the roles/purpose of the “Multi-skilled, integrated development and support team”. Without too much effort you could probably translate this into broader learning and teaching, not just e-learning. Heaven forbid, you could even use it for “blended learning”.

An emergent university e-learning information system should have a team of people that:

  • is responsible for performing the necessary training, development, helpdesk, and other support tasks required by system use within the institution;
  • contains an appropriate combination of technical, training, media design and production, institutional, and learning and teaching skills and knowledge;
  • through the performance of its allocated tasks the team is integrated into the everyday practice of learning and teaching within the institution and cultivates relationships with system users, especially teaching staff;
  • is integrated into the one organisational unit, and as much as possible, co-located;
  • can perform small scale changes to the system in response to problems, observations, and lessons learned during system support and training tasks rapidly without needing formal governance approval;
  • actively examines and reflects on system use and non-use – with a particular emphasis on identifying and examining what early innovators – to identify areas for system improvement and extension;
  • is able to identify and to raise the need for large scale changes to the system with an appropriate governance process; and
  • is trusted by organisational leadership to translate organisational goals into changes within the system, its support and use.

References

Faegri, T. E., Dyba, T., & Dingsoyr, T. (2010). Introducing knowledge redundancy practice in software development: Experiences with job rotation in support work. Information and Software Technology, 52(10), 1118-1132.

Seely Brown, J., & Duguid, P. (1991). Organizational learning and communities-of-practice: Toward a unified view of working, learning, and innovation. Organization Science, 2(1), 40-57.

University e-learning systems: the need for new product and process models and some examples

I’m in the midst of the horrible task of trying to abstract what I think I know about implementing e-learning information systems within universities into the formal “language” required of an information systems design theory and a PhD thesis. This post is a welcome break from that, but is still connected in that it builds on what is perhaps fundamentally different between what most universities are currently doing, and what I think is a more effective approach. In particular, it highlights some more recent developments which are arguably a step towards what I’m thinking.

As it turns out, this post is also an attempt to crystalise some early thinking about what goes into the ISDT. So some of the following is a bit rough. Actually, writing this has identified one perspective that I hadn’t thought of, which is potentially important.

Edu 2.0

The post arises from having listened to this interview with Graham Glass the guy behind Edu 2.0, which is essentially a cloud-based LMS. It’s probably one of a growing number out there. What I found interesting was his description of the product and the process behind Edu 2.0.

In terms of product (i.e. the technology used to provide the e-learning services), the suggestion was that because Edu 2.0 is based in the cloud – in this case Amazon’s S3 service – it could be updated much more quickly than more traditional institutionally hosted LMSs. There some connection here with Google’s approach to on-going modifications to live software.

Coupled with this product flexibility was a process (i.e. the process through which users were supported and the system evolved) that very much focused on the Edu 2.0 developers interacting with the users of the product. For example, releasing proposals and screenshots of new features within discussion forums populated with users and getting feedback; and also responding quickly to requests for fixes or extensions from users. To such an extent that Glass reports users of Edu 2.0 feeling like it is “there EDU 2.0” because it responds so quickly to them and their needs.

The traditional Uni/LMS approach is broken

In the thesis I argue that when you look at how universities are currently implementing e-learning information systems (i.e. selecting and implementing an LMS) the product (the enterprise LMS, the one ring to rule them all) and the process they use are not a very good match at all for the requirements of effectively supporting learning and teaching. In a nut shell, the product and the process is aimed at reducing diversity and the ability to learn, while diversity is a key characteristic of learning and teaching at a university. Not to mention that when it comes to e-learning within universities, it’s still very early days and it is essential that any systemic approach to e-learning have the ability to learn from its implementation and make changes.

I attempted to expand on this argument in the presentation I gave at the EDUCAUSE’2009 conference in Denver last year.

What is needed

The alternative I’m trying to propose within the formal language of the ISDT is that e-learning within universities should seek to use a product (i.e. a specific collection of technologies) that is incredible flexible. The product must, as much as possible, enable rapid, on-going, and sometimes quite significant changes.

To harness this flexibility, the support and development process for e-learning should, rather than be focused on top-down, quality assurance type processes, be focused on closely observing what is being done with the system and using those lessons to modify the product to better suit the diversity of local needs. In particular, the process needs to be adopter focused, which is described by Surry and Farquhar (1997) as seeing the individual choosing to adopt the innovation as the primary force for change.

To some extent, this ability to respond to the local social context can be hard with a software product that has to be used in multiple different contexts. e.g. an LMS used in different institutions.

Slow evolution but not there yet

All university e-learning implementation is not the same. There has been a gentle evolution away from less flexible products to more flexible produces, e.g.

  1. Commercial LMS, hosted on institutional servers.
    Incredibly inflexible. You have to wait for the commercial vendor to see the cost/benefit argument to implement a change in the code base, and then you have to wait until your local IT department can schedule the upgrade to the product.
  2. Open source LMS, hosted on institutional servers.
    Less inflexible. You still have to wait for a developer to see your change as an interesting itch to scratch. This can be quite quick, but it can also be slow. It can be especially quick if your institution has good developers, but good developers cost big money. Even if the developer scratches your itch, the change has to be accepted into the open source code base, which can take some time if its a major change. Then, finally, after the code base is changed, you have to wait for your local IT shop to schedule the upgrade.
  3. Open source LMS, with hosting outsourced.
    This can be a bit quicker than the institutional hosted version. Mainly because the hosting company may well have some decent developers and significant knowledge of upgrading the LMS. However, it’s still going to cost a bit, and it’s not going to be real quick.

The cloud-based approach used by EDU 2.0 does offer a product that is potentially more flexible than existing LMS models. However, apart from the general slowness in the updating, if the change is very specific to an individual institution, it is going to cause some significant problems, regardless of the product model.

Some alternative product models

The EDU 2.0 model doesn’t help the customisation problem. In fact, it probably makes it a bit worse as the same code base is being used by hundreds of institutions from across the globe. The model being adopted by Moodle (and probably others), having plugins you can add, is a step in the right direction in that institutions can choose to have different plugins installed.
However, this model typically assumes that all the plugins have to use the same API, language, or framework. If they don’t, they can’t be installed on the local server and integrated into the LMS.

This requirements is necessary because there is an assumption for many (but not all) plugins that they provide the entire functionality and must be run on the local server. So there is a need for a tighter coupling between the plugin and the LMS and consequently less local flexibility.

A plugin like BIM is a little different. There is a wrapper that is tightly integrated into Moodle to provide some features. However, the majority of the functionality is provided by software (in this case blogging engines) that are chosen by the individual students. Here the flexibility is provided by the loose coupling between blog engine and Moodle.

Mm, still need some more work on this.

References

Surry, D., & Farquhar, J. (1997). Diffusion Theory and Instructional Technology. e-Journal of Instructional Science and Technology, 2(1), 269-278.

Oil sheiks, Lucifer and university learning and teaching

The following arises from a combination of factors including:

Old wine in new bottles

Perhaps the key quote from Mark’s post is

This post is simply to try and say what many people don’t want to say and that is, that most universities really don’t care about educational technology or elearning.

My related perspective is that the vast majority of university learning and teaching is, at best (trying to be very positive), just ok. There’s a small bit that is really, really bad; and a small bit that is really, really good. In addition, most interventions to improve learning and teaching are not doing anything to change this distribution. At best, they might change the media, but the overall distribution is the same.

There’s a quote from Dutton and Loader (2002) that goes something like

without new learning paradigms educators are likely to use technology to do things the way they have always done; but with new and more expensive technology.

I am currently of the opinion that without new management/leadership paradigms to inform how universities improve learning and teaching, the distribution is going to remain the same just with new and more expensive organisational structures. This article from the Goldwater Institute about administrative bloat at American universities might be an indicator of that.

Don’t blame the academics

The “When good people turn bad” radio program is an interview with Philip Zimbardo. He’s the guy responsible for the Stanford prisoner study, an example of where good people turned really bad because of the situation in which they were place. The interview includes the following from Prof Zimbardo

You no longer can focus only on individual freedom of will, individual rationality. People are always behaving in a context, in a situation, and those situations are always created and maintained by powerful systems, political systems, cultural, religious ones. And so we have to take a more complex view of human nature because human beings are complex.

This resonates somewhat with a point that Mark makes

the problem of adoption is primarily not a technical one but one of organisational culture

. I agree. It’s the culture, the systems, the processes and the policies within universities that are encouraging/enshrining this distribution where most university learning and teaching is, at best, just ok.

The culture/system doesn’t encourage nor enable this to change. When management do seek to do something about this, their existing “management paradigm” encourages an emphasis on requiring change without doing anything effective to change the culture/system.

The proposition and the interest

Which is where I am interested in and propose the following

If you really wish to improve the majority of learning and teaching within a university, then you have to focus on changing the culture/system so that academics staff are encouraged and enabled to engage in learning about how to teach.

In addition, I would suggest that requiring learning (e.g. through requiring all new academic staff to obtain a formal qualification in learning) without aligning the entire culture/system to enable academic staff to learn and experiment (some of these characteristics are summarised here) is doomed to failure.

I’d also suggest that there is no way you can “align” the culture/system of a university to enable and encourage academic staff learning about teaching. At best you can engage in a continual process of “aligning” the culture/system as that process of “aligning” is itself a learning process.

Easy to say

I can imagine some universities leaders saying “No shit Sherlock, what do you think we’re doing?”. My response is you aren’t really doing this. Your paradigm is fundamentally inappropriate, regardless of what you claim.

However, actually achieving this is not simple and I don’t claim to have all the answers. This is why this is phrased as a proposition, it’s an area requiring more work.

I am hoping that within a few days, I might have a small subset of an answer in the next, and hopefully final, iteration of the design theory for e-learning that is meant to be the contribution of my thesis.

References

Dutton, W. and B. Loader (2002). Introduction. Digital Academe: The New Media and Institutions of Higher Education and Learning. W. Dutton and B. Loader. London, Routledge: 1-32.